
21/09/2022, 12:18 A General Overview of What Happens Before main() - Embedded Artistry

https://embeddedartistry.com/blog/2019/04/08/a-general-overview-of-what-happens-before-main/ 1/13

A General Overview of What Happens Before
main()

8 A P R I L 2 0 1 9 B Y P H I L L I P J O H N S T O N • L A S T U P D AT E D 2 2 A U G U S T 2 0 2 2

For most programmers, a C or C++ program’s life begins at the main function. They are

blissfully unaware of the hidden steps that happen between invoking a program and executing

main. Depending on the program and the compiler, there are all kinds of interesting functions

that get run before main, automatically inserted by the compiler and linker and invisible to

casual observers.

Unfortunately for programmers who are curious about the program startup process, the

literature on what happens before main is quite sparse.

Embedded Artistry has been hard at working creating a C++ embedded framework. The final

piece of the puzzle was implementing program startup code. To aid in the design of our

framework’s boot process, I performed an exploratory survey of existing program startup

implementations. My goal was to identify a general program startup model. I also want to

provide a more comprehensive look into how our programs get to main.

In this six-part series, we will be investigating what it takes to get to main:

1. What Happens Before main()?

2. Exploring Startup Implementations: Newlib (ARM)

3. Exploring Startup Implementations: OS X

4. Exploring Startup Implementations: Custom Embedded System with ThreadX

5. Abstracting a Generic Flow for Getting to main

6. Implementing our Generic Startup Flow

To begin our investigation into how programs start, we will provide a summary of what

happens in a program before main. The steps and responsibilities we describe areSign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!

https://embeddedartistry.com/blog/2019/04/08/
https://embeddedartistry.com/blog/author/phillip/
https://embeddedartistry.com/fieldmanual-terms/c/
https://embeddedartistry.com/fieldmanual-terms/cpp/
https://embeddedartistry.com/blog/2019/4/16/exploring-startup-implementations-newlib-arm
https://embeddedartistry.com/blog/2019/5/13/exploring-startup-implementations-os-x

21/09/2022, 12:18 A General Overview of What Happens Before main() - Embedded Artistry

https://embeddedartistry.com/blog/2019/04/08/a-general-overview-of-what-happens-before-main/ 2/13

generalized so that they apply to many systems. We will supplement the general theory in the

following articles with an analysis of real-world implementations.

Table of Contents:

1. Getting to Main: A General Overview

1. The _start Function

2. Runtime Setup

3. Other Scaffolding

4. Jumping to main

5. Returning from main

2. How Do We Get to _start?

1. Baremetal: reset vector

2. Bootloader launches application

3. OS Calls an exec function

3. Exploring On Your Own

4. Further Reading

Getting to Main: A General Overview
Before we dive into our exploration of how existing systems get to main, we should develop a

hypothesis about what generally happens. Since others have already explored program

startup, we can start with a clear idea of what happens before main.

The _start Function

For most C and C++ programs, the true entry point is not main, it’s the _start function. This

function initializes the program runtime and invokes the program’s main function.

The use of _start is merely a general convention. The entry function can vary depending on

the system, compiler, and standard libraries. For example, OS X only has dynamically linked

applications; the loader takes care of setup, and the entry point to the program is actually

main.

Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!

https://embeddedartistry.com/fieldmanual-terms/operating-system/
https://embeddedartistry.com/fieldmanual-terms/program-loader/

21/09/2022, 12:18 A General Overview of What Happens Before main() - Embedded Artistry

https://embeddedartistry.com/blog/2019/04/08/a-general-overview-of-what-happens-before-main/ 3/13

The linker controls the program’s entry point. The default entry point can be overridden by

clang and GCC linkers using the -e flag, although this is rarely done for most programs.

The implementation of the _start function is usually supplied by libc. The _start function

is often written in assembly. Many implementations store the _start function in a file called

crt0.s. Compilers typically ship with pre-compiled crt0.o object files for each supported

architecture.

Although much of this code is usually implemented by the C runtime, program startup code

behavior is not specified by the C and C++ standards. Instead, the standards describe the

conditions that must be true when the main function is called. However, there are many steps

that are commonly performed across the majority of _start implementations.

At a high level, the _start function handles:

1. Early low-level initialization, such as:

1. Configuring processor registers

2. Initializing external memory

3. Enabling caches

4. Configuring the MMU

2. Stack initialization, making sure that the stack is properly aligned per the ABI

requirements

3. Frame pointer initialization

4. Initialization of the C/C++ runtime

5. Initialization of other scaffolding required by the system

6. Jumping to main

7. Exiting the program with the return code from main

While the _start routine typically encompasses these activities, the specific order and

implementation varies from system to system. For example, early low-level initialization code

is commonly found with bare-metal embedded systems, but rarely on host machines with an

OS. Your Linux or OS X program startup code will have multiple scaffolding functions which

you will not find in embedded startup code.

Let’s take a look at a simple implementation of an x86_64 _start function taken from the OS

Dev wiki. This example provides us with a preview of the basic skeleton for program startup.

The implementations we will review later in this series are much more complex.

Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!

https://embeddedartistry.com/fieldmanual-terms/libc/
https://embeddedartistry.com/fieldmanual-terms/memory-management-unit/
https://embeddedartistry.com/fieldmanual-terms/application-binary-interface/
https://wiki.osdev.org/Creating_a_C_Library

21/09/2022, 12:18 A General Overview of What Happens Before main() - Embedded Artistry

https://embeddedartistry.com/blog/2019/04/08/a-general-overview-of-what-happens-before-main/ 4/13

The startup code below assumes that the program loader put:

*argv and *envp variables on the stack

argc in register %rdi

argv in register %rsi

envc in register %rdx

envp in register %rcx

Here’s the implementation of _start:

.section .text

.global _start

_start:

 # Set up end of the stack frame linked list

 movq $0, %rbp

 pushq %rbp # rip=0

 pushq %rbp # rbp=0

 movq %rsp, %rbp

 # Save argc and argv on the stack

 # We need those in a moment when we call main

 pushq %rsi

 pushq %rdi

 # Prepare signals, memory allocation, stdio, etc.

 call initialize_standard_library

 # Run the global constructors.

 call _init

 # Restore argc and argv before calling main

 popq %rdi

 popq %rsi

 # Run main

 call main

 # Terminate the process with the exit code

 # that was returned from main

 movl %eax, %edi

 call exitSign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!

21/09/2022, 12:18 A General Overview of What Happens Before main() - Embedded Artistry

https://embeddedartistry.com/blog/2019/04/08/a-general-overview-of-what-happens-before-main/ 5/13

Let’s dive in and see what happens during the runtime setup process

(initialize_standard_library above).

Runtime Setup

C/C++ runtime setup is a universal requirement for program startup. At a high level, our

runtime setup must accomplish the following:

1. Relocate any relocatable sections (if not handled by the loader or linker)

2. Initializing global and static memory

3. Prepare the argc and argv variables for invoking main (even if it’s just setting these to

0/NULL)

4. Perform any additional setup steps required by the C/C++ standard library

implementation.

Initializing global and static memory is broken down into two distinct steps that deserve

additional details.

First, the runtime initializes a subset of uninitialized memory (no = in the declaration) to 0. This

includes global and static variables, but not stack variables. All uninitialized data that needs to

be set to 0 is placed into the .bss section of the compiled program image by the linker. The

location of the .bss section is identified during initialization, and the memory is typically set to

0 with memset.

Second, C++ global objects must be constructed before calling main. The linker places these

constructors into the .init, .init_array, or .ctors section of the image. Some compilers

also allow C and C++ functions to be marked as a constructor using a compiler attribute (e.g.,

__attribute__((constuctor))). The constructors are stored in a list by the linker. The

runtime initialization process iterates through the list and calls each constructor.

These additional runtime initialization steps are run for many programs (but not all):

1. Heap initialization

2. Initialize stdio (i.e., stdin, stdout, stderr)

3. Initialize exception support (if using C++)

4. Register destructors and other cleanup functions that will run when exiting the program

(using atexit and __cxa_atexit)
Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!

https://embeddedartistry.com/fieldmanual-terms/requirement/
https://en.wikipedia.org/wiki/.bss

21/09/2022, 12:18 A General Overview of What Happens Before main() - Embedded Artistry

https://embeddedartistry.com/blog/2019/04/08/a-general-overview-of-what-happens-before-main/ 6/13

5. Prepare environment variables

In practice, the line between the responsibilities of _start and the C runtime initialization can

be fuzzy. Some implementations of _start handle pieces of the runtime setup directly, such

as setting the .bss section contents to 0 and calling global constructors. Other

implementations handle these tasks as part of the C runtime setup routines.

Assembly files commonly found during this portion of the startup process are crtbegin.s,

crtend.s, crti.s, and crtn.s. Compilers often ship pre-compiled object files for supported

architectures. These files are related to calling global constructors and destructors. When the

files are not used, equivalent functionality is often implemented in C and invoked during

runtime initialization.

Other Scaffolding

The setup process may invoke other functions to set up program scaffolding that the system

requires. Program scaffolding setup before main might include:

1. Threading support and thread local storage

2. Buffer overrun detection

3. Stack logging

4. Run-time error checks

5. Locale settings

6. Math error handling

7. Default math library precision

The specific scaffolding functions invoked vary across standard library implementations and

operating systems.

Jumping to main

Once we have a fully initialized system, we can safely jump to main and execute the

programmer’s portion of the application.

The most important aspect: once the program reaches main, it must be in a standards-

conforming state. Otherwise, the program’s assumptions will be invalidated.
Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!

https://embeddedartistry.com/fieldmanual-terms/buffer-overflow/

21/09/2022, 12:18 A General Overview of What Happens Before main() - Embedded Artistry

https://embeddedartistry.com/blog/2019/04/08/a-general-overview-of-what-happens-before-main/ 7/13

Returning From main

While we were primarily interested in how we get to main, we should finish our explanation of

the _start function’s responsibilities.

Because _start invokes main, it also handles its return. When control returns from main to

_start, the next function to run is exit. The exit function calls all functions registered with

atexitand __cxa_atexit during the startup process. Then exit calls the global destructors

(those placed in the .fini, .fini_array, or .dtors sections). Finally, exit terminates the

program with the return value provided by main.

The exit function is primarily used for hosted programs. Bare metal programs rarely have

use for the exit function or global destructors.

How Do We Get to _start?
Now that we know how our program gets to main by way of the _start function, you may

wonder how the program gets to _start.

There are three common paths:

1. Baremetal: reset vector

2. Bootloader launches application

3. OS Calls an exec function

Baremetal: Reset Vector

A baremetal embedded application represents the simplest path to _start.

Consider a baremetal platform with a binary stored in flash memory. When power is applied to

the processor, the processor will copy the program from flash and store it in RAM . Once the

program is loaded into memory, the processor jumps to the reset interrupt vector address.

The embedded program’s reset interrupt handler initializes the system after power-on or reset.

The reset handler typically performs an initial configuration of the processor registers and

critical hardware components (such as external RAM, caches, or MMU). Once this initial

configuration is complete, the reset handler jumps to _start.

1

Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!

21/09/2022, 12:18 A General Overview of What Happens Before main() - Embedded Artistry

https://embeddedartistry.com/blog/2019/04/08/a-general-overview-of-what-happens-before-main/ 8/13

Some systems do not utilize the C standard library, and in that case _start will not be called.

Instead, the reset handler will invoke other setup functions or will directly execute necessary

program setup steps.

: If the chip supports execute-in-place (XIP), the processor will skip the copy step and run the
program directly from flash memory.

Bootloader Launches Application

Many embedded applications are composed of multiple distinct images which run sequentially

during the boot process.

Many systems use a bootloader or hypervisor, which runs before loading and executing the

main application. Bootloaders perform a wide range of activities, including initializing system

hardware, decryption, decompression, checking that a firmware image is valid before loading

it, selecting a firmware image to boot, or determining whether to enter firmware update mode.

Bootloader complexity depends on the system’s requirements; not of the listed tasks will be

performed.

Other systems require an incremental boot process, especially when the main application is

larger than the processor’s internal RAM capacity. The first boot stage is typically a small

image which fits into the processor’s internal memory. This image will initialize external RAM

and load the main application from flash into the external RAM. The first stage boot may

perform additional steps, such as processor vector remapping or MMU configuration. Once

the main application is loaded, the first stage boot invokes the reset vector of the main

application.

Multi-stage boot scenarios complicate the program startup model. Each boot stage is

technically a standalone program. However, not every stage will run through the full program

startup process. Simple boot stages may only need to clear the .bss section to perform their

duties, while complex bootloaders need a fully initialized C/C++ runtime. Program startup

activities may be distributed across the boot process, with each stage handling specific tasks.

OS Calls an exec function

The most complex scenario is running a program on a host machine with a fully-fledged OS.

1

Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!

https://embeddedartistry.com/fieldmanual-terms/execute-in-place/

21/09/2022, 12:18 A General Overview of What Happens Before main() - Embedded Artistry

https://embeddedartistry.com/blog/2019/04/08/a-general-overview-of-what-happens-before-main/ 9/13

When you launch a program, your shell or GUI invokes a program loader. The loader is

responsible for copying the application image from the hard drive into memory and configuring

the environment that the program will run in. On Linux or OS X, the loader is a function in the

exec() family, typically execve() or execvp(). For Windows, the loader is the

LdrInitializeThunkfunction in ntdll.dll.

Loaders will often perform the following actions:

Check permissions

Allocate space for the program’s stack

Allocate space for the program’s heap

Initialize registers (e.g., stack pointer)

Push argc, argv, and envp onto the program stack

Map virtual address spaces

Dynamic linking

Relocations

Call pre-initialization functions

Once the loader has configured the program environment, it calls the program’s _start

function.

Exploring On Your Own
In the coming, we will review a selection of startup procedures which differ greatly in terms of

process and style.

We won’t be reviewing Linux program startup, because there are already high-quality articles

on that topic. For detailed descriptions about how Linux programs start, we recommend these

articles:

1. How Programs Get Run

2. How Programs Get Run: ELF Binaries

3. Linux x86 Program Start Up or – How the heck do we get to main()?

The startup code that your system runs is supplied by your libc implementation and system

libraries, and the implementations will also vary depending on the target architecture. Don’t beSign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!

http://pubs.opengroup.org/onlinepubs/009695399/functions/environ.html
http://pubs.opengroup.org/onlinepubs/009695399/functions/environ.html
https://lwn.net/Articles/630727/
http://dbp-consulting.com/tutorials/debugging/linuxProgramStartup.html
https://github.com/embeddedartistry/libc

21/09/2022, 12:18 A General Overview of What Happens Before main() - Embedded Artistry

https://embeddedartistry.com/blog/2019/04/08/a-general-overview-of-what-happens-before-main/ 10/13

surprised if you find a different startup process than those described in this series and in other

articles around the web.

You can explore your own program’s startup behavior using objdump or a debugger (I.e. gdb,

lldb). You can use debugging tools to tackle the problem from a variety of directions:

1. Set a breakpoint at main() and run a backtrace to see the function call stack

2. Set a breakpoint at _start() (or whatever entry point your backtrace shows) and step

through the execution

3. Dump the assembly output for the program using objdump

As Daniel Näslund pointed out in the comments, your debugger may be configured to

suppress backtraces that go past the main function. For gdb, you can run the following

command:

Further Reading
Matt Godbolt – The Bits Between the Bits: How We Get to main()

Embedded Artistry libc

Real Time C++: Chapter 8 and Section 3.6.2

How Programs Get Run

How Programs Get Run: ELF Binaries

Executing main in C/C++: Behind the Scenes

Linux x86 Program Start Up or How the heck do we get to main()?

The C Runtime Initialization, crt0.o

What Happens Before Main

OSDev Wiki: Creating a C Library

OSDev Wiki: Calling Global Constructors

OSDev Wiki: C++

Linkers and Loaders

Wikipedia: Loader (Computing)

Wikipedia: Dynamic Linker

Open Group: Execute a File

set backtrace past-main on(gdb)

Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!

https://github.com/embeddedartistry/libc
https://embeddedartistry.com/fieldmanual-terms/debugging/
https://www.youtube.com/watch?v=dOfucXtyEsU
https://github.com/embeddedartistry/libc
https://amzn.to/2I4GyAH
https://lwn.net/Articles/630727/
https://www.geeksforgeeks.org/executing-main-in-c-behind-the-scene/
http://dbp-consulting.com/tutorials/debugging/linuxProgramStartup.html
https://www.embecosm.com/appnotes/ean9/html/ch05s02.html
https://www.bigmessowires.com/2015/10/02/what-happens-before-main/
https://wiki.osdev.org/Creating_a_C_Library
https://wiki.osdev.org/Calling_Global_Constructors
https://wiki.osdev.org/C%2B%2B
https://www.linuxjournal.com/article/6463
https://en.wikipedia.org/wiki/Loader_(computing)
https://en.wikipedia.org/wiki/Dynamic_linker
http://pubs.opengroup.org/onlinepubs/009695399/functions/environ.html

21/09/2022, 12:18 A General Overview of What Happens Before main() - Embedded Artistry

https://embeddedartistry.com/blog/2019/04/08/a-general-overview-of-what-happens-before-main/ 11/13

Wikipedia: .bss

Memfault: Zero to Main() Series

Bare Metal C

How to Write a Bootloader from Scratch

6 Replies to “A General Overview of What Happens Before main()”

8 A P R I L 2 0 1 9 AT 2 2 : 1 6

Probably deserved a comment about static initialization, and where that fits in, and its

implications…

8 A P R I L 2 0 1 9 AT 2 2 : 4 9

Are you referring to initializing static memory in the .bss section to 0, or the invocation of global

constructors?

Both are listed, but certainly deserve more commentary. They will also be expanded upon in the

next 5 articles, since those are major parts of the boot flow.

9 A P R I L 2 0 1 9 AT 0 5 : 5 8

Great article, as always!

U N C AT E G O R I Z E D

B O O T P R O C E S S , C , C P P , F E AT U R E D , L E S S O N S F R O M T H E F I E L D

Bryce Schober

Phillip Johnston

Daniel Näslund

Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!

https://en.wikipedia.org/wiki/.bss
https://interrupt.memfault.com/blog/tag/zero-to-main
https://interrupt.memfault.com/blog/zero-to-main-1
https://interrupt.memfault.com/blog/how-to-write-a-bootloader-from-scratch
https://embeddedartistry.com/blog/category/uncategorized/
https://embeddedartistry.com/blog/tag/boot-process/
https://embeddedartistry.com/blog/tag/c/
https://embeddedartistry.com/blog/tag/cpp/
https://embeddedartistry.com/blog/tag/featured/
https://embeddedartistry.com/blog/tag/lessons-from-the-field/
http://www.about.me/phillip.johnston
https://dannas.name/TIL.html

21/09/2022, 12:18 A General Overview of What Happens Before main() - Embedded Artistry

https://embeddedartistry.com/blog/2019/04/08/a-general-overview-of-what-happens-before-main/ 12/13

With the GDB debugger, the default settings (atleast on my Ubuntu 18.10 box) is to not show

backtraces past main. That can be changed with the set backtrace past-main command:

$ gdb a.out

(gdb) start

Temporary breakpoint 1, 0x0000555555554627 in main ()

(gdb) bt

0 0x0000555555554627 in main ()
(gdb) set backtrace past-main on

(gdb) bt

0 0x0000555555554627 in main ()

1 0x00007ffff7a05b97 in
__libc_start_main
(main=0x555555554623 <main>,
argc=1, argv=0x7fffffffde98, init=
<optimized out>, fini=<optimized out>,
rtld_fini=<optimized out>,
stack_end=0x7fffffffde88)
at ../csu/libc-start.c:310

2 0x000055555555451a in _start ()
There are a ton of resources about program startup and you’ve done a good job summarizing the

most important concepts. If anyone is interested in the particulars of Linux program startup, then

I can recommend two LWN articles by David Drysdale: https://lwn.net/Articles/630727/ andSign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!

https://lwn.net/Articles/630727/
https://lwn.net/Articles/631631/

21/09/2022, 12:18 A General Overview of What Happens Before main() - Embedded Artistry

https://embeddedartistry.com/blog/2019/04/08/a-general-overview-of-what-happens-before-main/ 13/13

https://lwn.net/Articles/631631/. It’s quite likely that your planned article on OS X startup will

overlap with these.

9 A P R I L 2 0 1 9 AT 1 7 : 2 9

Thanks Daniel, I added the gdb command to the article.

I had not seen those two LWN articles (amazing what you can miss even with a targeted search).

Thanks for sharing them, I have incorporated them into the article and further reading links.

1 0 A P R I L 2 0 1 9 AT 2 1 : 5 0

Awesome article! I can’t wait for the next three.

4 J U N E 2 0 2 1 AT 0 1 : 1 0

Could you give some tips to a newbie who is beginner in RE and have some knowledge of c and

want to understand this article properly

Phillip Johnston

Andrew K.

Muldimalph

Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!Sign up & get
our portable
software

Enter your email Sign up!

https://lwn.net/Articles/630727/
https://lwn.net/Articles/631631/
http://www.about.me/phillip.johnston

